Word length perturbations in certain symmetric presentations of dihedral groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short presentations for alternating and symmetric groups

We derive new families of presentations (by generators and relations) for the alternating and symmetric groups of finite degree n. These include presentations of length that are linear in log n, and 2-generator presentations with a bounded number of relations independent of n.

متن کامل

On the Fibonacci length of powers of dihedral groups

For a finitely generated group G = 〈A〉, where A = {a1, a2, . . . , an}, the sequence xi = ai, 1 ≤ i ≤ n, xi+n = ∏n j=1 xi+j−1, i ≥ 1, is called the Fibonacci orbit of G with respect to the generating set A, denoted FA(G). If FA(G) is periodic we call the length of the period of the sequence the Fibonacci length of G with respect to A, written LENA(G). In this paper we examine the Fibonacci leng...

متن کامل

Calculations of Dihedral Groups Using Circular Indexation

‎In this work‎, ‎a regular polygon with $n$ sides is described by a periodic (circular) sequence with period $n$‎. ‎Each element of the sequence represents a vertex of the polygon‎. ‎Each symmetry of the polygon is the rotation of the polygon around the center-point and/or flipping around a symmetry axis‎. ‎Here each symmetry is considered as a system that takes an input circular sequence and g...

متن کامل

Computing Word Length in Alternate Presentations of Thompson's Group F

We introduce a new method for computing the word length of an element of Thompson’s group F with respect to a “consecutive” generating set of the form Xn = {x0, x1, · · · , xn}, which is a subset of the standard infinite generating set for F . We use this method to show that (F, Xn) is not almost convex, and has pockets of increasing, though bounded, depth dependent on n.

متن کامل

Sumsets in dihedral groups

Let Dn be the dihedral group of order 2n. For all integers r, s such that 1 ≤ r, s ≤ 2n, we give an explicit upper bound for the minimal size μDn (r, s) = min |A · B| of sumsets (product sets) A · B, where A and B range over all subsets of Dn of cardinality r and s respectively. It is shown by construction that μDn (r, s) is bounded above by the known value of μG (r, s), where G is any abelian ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2017

ISSN: 0166-218X

DOI: 10.1016/j.dam.2017.01.002